

Hintergrund

- Die Beurteilung der biomechanischen Verhaltens der natürlichen Linse und von IOL's ist eine signifikante Herausforderung, deren Lösung unter anderem in einer hochauflösenden Vorderabschnittsbildgebung liegt.
- Das Ziel der präsentierten Untersuchungen ist die Beurteilung des vorderen Augenabschnittes
 - in phaken Augen
 - in pseudophaken Augen
 nach "lens refilling"
 - mittels micro-MRT.

Vorderabschnittsbildgebung

- Scheimpflug Photographie
- Optische Kohärenztomographie
- HF Ultraschall (Ultraschallbiomikroskopie)
- <u>Magnetresonanztomographie</u>

MR Imaging

- MRT Untersuchungen (7.1 Tesla, ClinScan, Bruker Bioscan) •
- Innerer Röhrendurchmesser: 200 mm
- Ganzkörperspule für Ratten mit optimierten Scansequenzen
- Theoretische Ortsauflösung > 70 micons

- Auge positionierter Spule
- Specification ClinScan, Bruker Bioscan: Field strength 7.7 Field strength: 7 T
- . Diameter of clear bore: > 302 mm
- Stray-field (5 Gauss): +/- 3 m axial, +/- 2 m radial,
- Outer / inner diameter: 301.5 mm / 200.5 mm
- Gradient amplitude: 290 mT/m Slew rate: 1160 T/m/s
- Linearity 130 / 100 mm DSV: < ± 3% / < ± 2%
 - Source: Bruker Biosci

Minirhexis mittels eines flexiblen Polymers mit dem Ziel der Wiederherstellung der Akkommodationsfähigkeit im Rahmen einer Kataraktoperation)

Konzept von Haefliger / Hettlich / Nishi

Follow up Kanninchen 40, 36 Monate postop, kein Nachstar aufgrund pharmakologischer Nachstarprophylaxe

I

- Ortsauflösung, Erfordernisse und Anwendung -					
Method	Axiale Auflösung	Transversale Auflösung	Eindingtiefe	Vorraussetzungen	Anwendung
Scheimpflugphotographie	methodenabhängig	methodenabhängig	Hinterer Linsenpol	Optische Transparenz	Hornhautpachymetrie Hormhauttopographie Vorderkammerdimensionen
Optische Kohärenztomographie	< 25 µm methodenabhängig	10 – 100 µm methodenabhängig	Anterior Linsenpol Sklera mit Zilirkörper bedingt	teilweise optische Transparenenz, wellenlängenabhängig	Hornhautpachymetrie Honrhauttotpographie Vorderkammerdimensionen Kammerwinkel Sukusdarstellung
HF Ultraschall	> 25 µm	> 50 µm frequenzabhängig	Hinterer Linsenpol frequenzabhängig	keine optische Transparenz	Vorderkammerdimensionen Ziliarkörper, Kammerwinkel Sulcusdarstellung,
Micro MRT	>70 µm	>70 µm System und Feldstärkeabhängig	Gesamtes Auge	keine optische Transparenz,	Verzerrunsgfreie Darstellung des gesamten Auges(wissenschaftlich)
Konfokale Mikroskopie	1 -3 µm	$5-7 \mu m$	Kornea and Skleraoberfläche	Transparenz bedingt die Eindringtiefe	Mikromorphologie der Hornhaut
12.05.2009					22
12.03.2003					22

Schlussfolgerungen

- 7 Tesla MRT bietet die Möglichkeit der artefaktfreien räumlichen Darstellung und
 - Beurteilung der
 - Natürlichen Linse
 - IOL Positionierung und Haptikkonfiguration
 - Linsenkonfiguration nach "lens refilling" Experimenten
 - im Tierexperiment oder bei Explantaten
- teuer
- limitierter Zugang, insbesondere human
- grosser Aufwand
- intraokulare Anwendung zur Zeit nur
- wissenschaftlich
- artefaktfreie Darstellung des gesamten Bulbus

