

Light Adjustable Lens (LAL)

- <u>Incorrect lens power:</u> one of the most common reasons for explanting IOLs
- Mamalis N. Spencer TS. Complications of foldable intraocular lenses requiring explantation or secondary intervention – 2000 survey update. J Cataract Refract Surg 2001; 27:1310-1317.
- Mamalis N. Complications of foldable intraocular lenses requiring explantation or secondary intervention – 2001 survey update. *J Cataract Refract Surg* 2002; 28:2193-2201.

BERI

Incorrect Lens Power

- IOL explant/exchange
- Piggyback pseudophakic IOL

2002-531-532

- Piggyback phakic IOL
- Corneal refractive procedures: LASIK, corneal incisions, corneal thermal keratoplasty, intrastromal corneal ring segments...
- For refractive lens exchange: "Bioptics" procedure
 -Zaldivar R, Oscherow S, Piezzi V. Bioptics in phakic and pseudophakic
 intraocular lens with the Nidek EX-5000 excimer laser. J Refract Surg
 2002;18:S336-S339.

-Nichamin LD, Expanding the role of Bioptics to the pseudophakic patient. In: Buratto L, Werner L, Zanini M, Apple DJ, eds. Phacoemulsification: Principles and Techniques. Thorofare, NJ: Slack

Light Adjustable Lens (LAL)

- Calhoun Vision: three-piece silicone lens with photosensitive silicone subunits that move within the lens under a low intensity near-UV light
- Non-invasive postoperative adjustment of the lens power
- 6.0 mm optic; 13.0 mm diameter
- Optic refractive index: 1.43
- Square optic edges (PCO prevention)
- Modified C, PMMA haptics
- Optic-haptic angulation of 10°

Light Adjustable Lens (LAL)

-Schwartz DM. Light adjustable lens. *Trans Am Opthalmol Soc* 2003; 101:417-436.

-Werner L, Mamalis N, Apple DJ. Biomaterials for wavefront customization. <u>*In:*</u> Krueger RR, Applegate RA, MacRae SM, eds. Wavefront Customized Visual Correction. Thorofare, NJ: Slack Inc., 2004;271-278.

-Werner L, Mamalis N. Wavefront corrections of intraocular lenses. *Ophthalmol Clin N Am* 2004;17 (2):233-245.

BERI

BERI

Adding Power to the LAL

LAL: Mechanism for dioptric change (hyperopic)

Light Adjustable Lens (LAL)

- Light application (365 nm) device: similar to slit lamp coupled with computer
- Irradiation system: mercury arc lamp
- Pupil dilation, topical anesthesia, 0.835X contact lens with hydroxypropylmethylcellulose
- Reticule target (6.0 mm diameter) aligned with the edge of the optic (focus at the optic-haptic junctions)
- Enter base power and correction needed
- -2.0 D for a +20.0 D LAL: 10 mw/cm² for 120 seconds
- "Lock-in": higher intensity

Digital Light Delivery System Designed and Manufactured By Carl Zeiss Meditec AG

Modified slit-lamp device Digital chip with 1.3 million microscopic mirrors Worldwide installation and service by Zeiss System and software sold by Calhoun

BERI

Light Adjustable Lens (LAL): <u>Animal Studies</u>

3 = 111

4 ≡ 111

5 ≡ III 6 ≡ III

In vivo, rabbit studies:
 -Histopathological studies: biocompatibility
 -Optical bench testing: reproducibility

• *In vitro* studies: no cytotoxicity after Nd:YAG laser

Werner L, et al. Corneal endothelial safety with the irradiation system for the light adjustable lens. *J Cataract Refract Surg* 2007 (in press)

- 12 cats (similarity with the human cornea)
- <u>"Lock-in" treatment:</u> near UV (365 nm), 250 mW/cm², central 6.0 mm of right cornea, 120 seconds
- Sacrifice (3 cats) 1 day, 1 week, 1 and 3 months

BERI

Vital staining of cornea: Trypan blue/Alizarin red
 Quantification of cell damage/loss with digital system (EPCO, originally develop for PCO quantification; Tetz MR, et al. Photographic image analysis system of posterior capsule opacification. *J Cataract Refract Surg* 1997; 23:1515-1520)

23:1313-1320)	 ■ 1900 2000 - [19 ● [in]ook [picabe ■ [h] △ □ 		
	Image Data	Native Image Evaluated	Image
BERI	PCO Data	Evaluation Results Total PCO Score 0.124 0 0.124 Area 3 Area 4 0 0 0 0	Calculation Mode I = 100, = 100 (Payon of Internet) C = Calculation Evaluation Mode P C = Calculation # = Realware

Werner L, et al. Corneal endothelial safety with the irradiation system for the light adjustable lens. *J Cataract Refract Surg* 2007 (in press)

Light Adjustable Lens (LAL)

- Initial clinical application: pseudophakic lens for cataract surgery
- Technology can be applied to accommodating, phakic lenses...
- Use in conjunction with wavefront sensing: full customization
- Initial clinical trials: 2004
- Availability: 2006 in Europe (?)
- Availability: 2008 in the US (?)

BERI

BCVA 20/20 20/20
UCVA 20/30- 20/20-
2 Month Pre-Adjust Post-Adjust

Yellow Intraocular Lenses

- The natural human crystalline lens yellows with age
- Progressive increase in absorbance within the blue range of the visible spectrum
- Blue-light was shown to have significant retinal phototoxicity
- *Blue-light absorbing (yellow) IOLs:* Reduction of the risk for macular degeneration (indirect evidence)

SmartYellowTM Lens

- Proprietary hydrophobic acrylic material (Photochromic Matrix), Medennium Inc.
- Three-piece lens, blue-colored PVDF haptics*
- UV-near blue absorption curve similar to the AcrySof® Natural lens when exposed to UV light
- Standard UV absorbing IOL in an indoor
 environment

*Werner L, Mamalis N, Romaniv N, et al. New photochromic foldable intraocular lens: Preliminary study on feasibility and biocompatibility. *J Cataract Refract Surg* 2006; 32:1214-1221.

exposed to natural sunlight and to white light sources...

BERI

<u>Clinical Study</u>

- Dr. Guillermo Avalos, Mexico
- SmartYellowTM Lens = Photochromic Matrix Acrylic Aurium[®]
- 10 subjects; 10 eyes implanted with Aurium® and 10 eyes implanted with Matrix Acrylic
- Examination at 1, 3, 14, and 30 days postoperatively
- BCVA at 30 days outdoors and indoors

```
BERI
```

Clinical Study

- Aurium® performs similarly to regular Matrix indoors
- Subjective evaluation indicates that subjects
 prefer the Aurium®

