“Evaluation of the Geometry of the Anterior Segment of Postmortem Human Eyes with two Imaging Systems”

Liliana Werner, MD, PhD

John A. Moran Eye Center University of Utah Salt Lake City, UT, USA

Berlin Eye Research Institute (BERI)
Berlin, Germany

Anterior Chamber
Phakic Intraocular Lens Designs

Two major concerns:
- Interaction with corneal endothelium
- Pupil ovalization

Courtesy: Dr. G. Baikoff, Marseilles, France

Cataract Formation after Implantation of Phakic Posterior Chamber IOLs

Courtesy: Dr. P. Koch, Koch Eye Surgicenter, Inc., Warwick, RI, USA

ICL – Pigment Deposition/Dispersion

Case of Dr. R. Gerl, Germany
3-9 o’clock

11.75 ± 0.43
11.88 ± 0.25
11.32 ± 0.34

INTRODUCTION

• Rotation of angle-fixated or posterior chamber phakic IOLs: IOL maller than the axis of fixation, until it finds a more stable position*

• Internal dimensions of the eye anterior segment may be significantly different, if different meridians are measured

OBJECTIVE

• Measure internal dimensions of the human eye along 4 different meridians

1. High-frequency ultrasonography: Artemis 2 (Ultralink LLC); 50 MHz
2. Anterior segment optical coherence tomography (OCT); slitlamp-adapted system (SL-OCT, Heidelberg Engineering)

MATERIAL AND METHODS: ULTRASOUND STUDY

20 human eyes obtained postmortem
Fixation in 10% neutral buffered formalin
John A. Moran Eye Center, University of Utah

MATERIAL AND METHODS: ULTRASOUND STUDY
MATERIAL AND METHODS:
ULTRASOUND STUDY

- 24 human eyes obtained postmortem
- Fixation in 10% neutral buffered formalin
- Berlin Eye Research Institute

OCT STUDY

- Angle-to-angle dimensions (microns); 24 human cadaver eyes; anterior segment optical coherence tomography; 4 meridians

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean +/- SD</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP length (mm)</td>
<td>23.97 +/- 0.60</td>
<td>22.81</td>
<td>25.27</td>
</tr>
<tr>
<td>AA vertical</td>
<td>11814.9 +/- 542</td>
<td>10959</td>
<td>12775</td>
</tr>
<tr>
<td>AA horizontal</td>
<td>11548.7 +/- 401</td>
<td>10819</td>
<td>12175</td>
</tr>
<tr>
<td>AA oblique 1</td>
<td>11631.0 +/- 522</td>
<td>10627</td>
<td>12350</td>
</tr>
<tr>
<td>AA oblique 2</td>
<td>11573.8 +/- 409</td>
<td>10840</td>
<td>12239</td>
</tr>
<tr>
<td>SS vertical</td>
<td>11107.4 +/- 563</td>
<td>10202</td>
<td>12123</td>
</tr>
<tr>
<td>SS horizontal</td>
<td>10889.4 +/- 489</td>
<td>10200</td>
<td>11957</td>
</tr>
<tr>
<td>SS oblique 1</td>
<td>10974.4 +/- 541</td>
<td>10098</td>
<td>11878</td>
</tr>
<tr>
<td>SS oblique 2</td>
<td>10900.2 +/- 480</td>
<td>10180</td>
<td>11755</td>
</tr>
</tbody>
</table>

AA in different meridians: P = 0.003 (Huynh-Feldt test for within-subjects differences)
SS in different meridians: P = 0.009 (Huynh-Feldt test for within-subjects differences)

• Drawbacks of studies with human cadaver eyes:
 - Post-mortem changes
 - Variations in enucleation/fixation time
 - Shrinkage due to fixation
 - Difficulty in controlling intraocular pressure

• Confirmation of results in patients

DISCUSSION
CONCLUSIONS

- Human eye not geometrically round:
 - Postoperative rotation of phakic lenses ("
 - Differences significant for IOL sizing/manufacture ("

- Largest measurements: ("

Clinical Study with Dr. Carlo Lovisolo (Milan, Italy)

- 50 eyes of living patients
- High-frequency (50 MHz) digital ultrasound system: Artemis (Ultralink)

<table>
<thead>
<tr>
<th>Eyes (N = 50)</th>
<th>Meridian 1: AA</th>
<th>Horizontal SS</th>
<th>Meridian 2: AA</th>
<th>Vertical SS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean +/- SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oblique 2</td>
<td>11049.3 +/- 546.66</td>
<td>11670.96 +/- 491.00</td>
<td>11226.66 +/- 527.08</td>
<td>11830.38 +/- 540.17</td>
</tr>
<tr>
<td>Oblique 1</td>
<td>11049.3 +/- 546.66</td>
<td>11670.96 +/- 491.00</td>
<td>11226.66 +/- 527.08</td>
<td>11830.38 +/- 540.17</td>
</tr>
<tr>
<td>Meridian 3:</td>
<td>11109.62 +/- 492.55</td>
<td>11645.24 +/- 444.12</td>
<td>11088.14 +/- 501.38</td>
<td>11641.36 +/- 407.62</td>
</tr>
<tr>
<td>Meridian 4:</td>
<td>11109.62 +/- 492.55</td>
<td>11645.24 +/- 444.12</td>
<td>11088.14 +/- 501.38</td>
<td>11641.36 +/- 407.62</td>
</tr>
</tbody>
</table>

Mean +/- SD (N = 50)

AA in different meridians: P = 0.001 (Huynh-Feldt test)
SS in different meridians: P < 0.001 (Huynh-Feldt test)

Other Clinical Studies in the Literature

 - 28 eyes of 14 patients; Artemis (Ultralink)
 - Sequential meridional scan planes at 30 degrees increments
 - Circular statistics used to compare the orientation of the largest diameter
 - General trend for orientation of the meridian of largest diameter: horizontal meridian

 - 36 eyes: OCT system (Carl Zeiss, Meditec)
 - Vertical, horizontal and 2 major oblique anterior chamber diameters
 - Horizontal and vertical diameters: 12.10 +/- 0.40 and 12.40 +/- 0.45 mm
 - Statistical analyses of the data not provided

 - 28 eyes of 14 patients; Artemis (Ultralink)
 - Sequential meridional scan planes at 30 degrees increments
 - Circular statistics used to compare the orientation of the largest diameter
 - General trend for orientation of the meridian of largest diameter: horizontal meridian

 - 36 eyes: OCT system (Carl Zeiss, Meditec)
 - Vertical, horizontal and 2 major oblique anterior chamber diameters
 - Horizontal and vertical diameters: 12.10 +/- 0.40 and 12.40 +/- 0.45 mm
 - Statistical analyses of the data not provided

CONCLUSIONS

• Human eye not geometrically round:
 - Postoperative rotation of phakic lenses ("
 - Differences significant for IOL sizing/manufacture ("

• Largest measurements: ("

Liliana Werner, MD, PhD
Director of Pre-Clinical Research
Berlin Eye Research Institute
Berlin, Germany

Associate Professor
John A. Moran Eye Center
University of Utah
Salt Lake City, UT, USA